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Effect of Synbiotic on the Gut Microbiota of Cesarean

Delivered Infants: A Randomized, Double-blind,

Multicenter Study
�Mei Chien Chua, yKaouther Ben-Amor, zChristophe Lay, �Anne E.N. Goh,

�Wen Chin Chiang, �Rajeshwar Rao, zCharmaine Chew, §jjSurasith Chaithongwongwatthana,
§jjNipon Khemapech, y�Jan Knol, and §jjVoranush Chongsrisawat

ABSTRACT

We determined the effect of short-chain galacto-oligosaccharides (scGOS),

long-chain fructo-oligosaccharides (lcFOS) and Bifidobacterium breve M-

16V on the gut microbiota of cesarean-born infants. Infants were random-

ized to receive a standard formula (control), the same with scGOS/lcFOS

and B. breve M-16V (synbiotic), or with scGOS/lcFOS (prebiotic) from birth

until week 16, 30 subjects born vaginally were included as a reference group.

Synbiotic supplementation resulted in a higher bifidobacteria proportion

from day 3/5 (P< 0.0001) until week 8 (P¼ 0.041), a reduction of Enter-

obacteriaceae from day 3/5 (P¼ 0.002) till week 12 (P¼ 0.016) compared to

controls. This was accompanied with a lower fecal pH and higher acetate. In

the synbiotic group, B. breve M-16V was detected 6 weeks postintervention

in 38.7% of the infants. This synbiotic concept supported the early modu-

lation of Bifidobacterium in C-section born infants that was associated with

the emulation of the gut physiological environment observed in vaginally

delivered infants.

Key Words: Bifidobacterium breve M-16V, C-section, gut microbiota,

prebiotics, probiotics, synbiotics

(JPGN 2017;65: 102–106)

E pidemiological studies have indicated associations between
cesarean section (C-section), immune, and metabolic dis-

orders (1–3). The way we are born has been hypothesized to cause
an epigenetic and microbial imprinting that may have consequences
on our long-term health (4). Several studies depicted a delayed
colonization of keystone microbial colonizers, such as Bifidobac-
terium and Bacteroides, in cesarean-born infants (5,6). Those early
colonizers have a role in orchestrating humoral and cell-mediated
immune maturation, are endowed with the genomic capability to
metabolize human milk oligosaccharides, and provide colonization
resistance by deterring the overgrowth of opportunistic pathogens
(7,8). Members of the Enterobacteriaceae family, such as Klebsiella
and Enterobacter, have been described to dominate the gut of
infants born by C-section; however, little is known about their
impact on the host health (5,6).

Because early life is a critical period, as the infant’s immune
system is still maturing and is influenced by the gut microbiota, any
dysbiosis as a result of environmental factors such as delivery mode
and/or antibiotic use could lead to long-lasting health effects (9). A
recent study suggested that swabbing infants born by C-section
immediately after birth with vaginal secretions (vaginal seeding)

What Is Known

� Cesarean birth has been associated with increased
risk of immune and metabolic diseases later in life,
likely due to the altered gut microbiota.

� The gut microbiota acts as a potential modifiable risk
factor for disease development.

� Little is known about the effect of nutrition on C-
section–born infants.

What Is New

� Supplementation with short-chain galacto-oligosac-
charides/long-chain fructo-oligosaccharides and Bifi-
dobacterium breve M-16V compensates the delayed
Bifidobacterium colonization in C-section–delivered
infants and modulates the production of acetate and
the acidification of the gut. These observed physio-
logical conditions, described as indicator of gut
health, emulate the ones observed in vaginally
born infants.
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could partially restore the missing maternal microbiota (10). Alter-
natively, supplementation with prebiotics, probiotics, or synbiotics
has been pursued as a nutritional solution to regulate immune
responses through a modulation of the gut microbiota. The aim
of the present study was to investigate the effect of an infant formula
supplemented with short-chain galacto-oligosaccharide (scGOS)/
long-chain fructo-oligosaccharides (lcFOS) and Bifidobacterium
breve M-16V on the gut microbiota of C-section–born infants.

METHODS
This was an exploratory, randomized, double-blind, con-

trolled study conducted between June 2011 and April 2013 in
Singapore and Thailand. All participating centers obtained approval
of their independent local Ethical Review Board. Written informed
consent was obtained from all parents before randomization. The
study was registered in the Dutch Trial Register (http://www.trial
register.nl/NTR Number: 2838).

Eligible infants were randomly assigned to receive either
nonhydrolyzed cow’s milk–based formula (control formula), or to
the same formula supplemented with 0.8 g/100 mL scGOS/lCFOS
(prebiotic formula) or to identical prebiotic formula additionally
supplemented with B. breve M-16V (Morinaga Milk Industry Co.
Ltd) at a dose of 7.5� 108 cfu/100 mL (synbiotic formula). Non-
randomized infants born vaginally were included as a reference
group. Study formulas were administered from birth (1–3 days at
the latest) until 16 weeks of age (intervention period). Stool samples
were collected at day 3, day 5, week 2, week 4, week 8, week 12,
week 16, and week 22. All samples were frozen immediately by the
parents and transported to the hospital and stored at �808C.
Fluorescent in situ hybridization and quantitative real-time poly-
merase chain reaction were used to assess the gut microbiota
composition. The primary outcome was the determination of total
fecal bifidobacteria. Secondary parameters were Bifidobacterium
species abundance, other members of the gut microbiota, pH, short-
chain fatty acid (SCFA), and lactate and safety parameters (anthro-
pometry, gastrointestinal tolerance, adverse events [AEs]).

Statistical analyses were performed on both the modified
intention-to-treat (mITT) and Per Protocol (PP) populations. The
mITT consisted of all randomized subjects who provided at least 1
baseline and postbaseline stool sample. For the safety data, All
Subjects Treated (AST) was used. A generalized linear mixed
model (PROC GLIMMIX) with lognormal distribution and identity
link function was used to evaluate the treatment effect on primary
and secondary parameters (SAS 9.2, SAS Institute, NC). The model
was fittedwithcore factors (treatmentand timeascategorizedbyweek
numbers, treatment-by-time interaction, and country) and selected
covariates (daily formula-feeding and number of daily breast-feeding
servings). Description of the clinical trial conduct, laboratory, and
statistical analyses is available in the Supplemental Digital Content,
Table 1 and Table 2, http://links.lww.com/MPG/A988.

RESULTS
A total of 153 subjects delivered by C-section were rando-

mized to receive either the synbiotic (n¼ 52), prebiotic (n¼ 51), or
the control formula (n¼ 50). Thirty subjects were included in the
nonrandomized reference group (Supplemental Digital Content,
Fig. 1, http://links.lww.com/MPG/A988). Baseline data did not
show significant differences between control and active C-section
treatment groups (Supplemental Digital Content, Table 3, http://
links.lww.com/MPG/A988), with the exception for birth weight in
Thailand where simultaneous pairwise comparisons showed a
statistical significance between control (n¼ 6, mean¼ 3.27) and
prebiotic (n¼ 6, mean¼ 2.94) (mean difference¼ 0.32; 95% con-
fidence interval: 0.03, 0.63) (data not shown). All infants included

were mixed-fed; indeed most subjects received the study product
corresponding to their allocated group in addition to breast-feeding.
The product intake and exposure is illustrated in Supplemental
Digital Content, Table 4, http://links.lww.com/MPG/A988.

Although the objective of the study was not to compare the
randomized intervention groups with the reference group, our data
showed a striking delayed colonization by bifidobacteria in infants
delivered by C-section compared to those delivered vaginally
during the first 2 to 3 months of life (Fig. 1). From day 3/5 until
week 8, the proportion of bifidobacteria in the mITT population was
significantly higher in the synbiotic than in the control (P< 0.0001
and P¼ 0.041), respectively). Analysis by quantitative real-time
polymerase chain reaction, revealed a significantly higher absolute
gene count of Bifidobacterium in the synbiotic compared to the
control group from day 3/5 (P< 0.0001) till week 12 (P¼ 0.032). In
the prebiotic group, the percentage of bifidobacteria increased over
the course of the intervention, but no statistically significant
difference was observed when compared to the control group in
both mITT and PP populations (Table 1, Fig. 1A, Supplemental
Digital Content, Table 5, http://links.lww.com/MPG/A988).

The probiotic strain B. breve M-16V was detected at day 3/5
in 97.9% of infants in the synbiotic group and was still found in
38.7% of the infants 6 weeks postintervention (Fig. 1B). In addition,
we monitored the distribution of other Bifidobacterium species, and
observed that B. breve, B. bifidum, and B. longum group were the
most frequently detected in all groups. At day 3/5, nearly all infants of
the synbiotic group were colonized by B. breve and this was signifi-
cantly higher compared to the control group (P< 0.0001). The stat-
istical significance remained till week 16 (P¼ 0.02). The estimated
meanproportion of infants withdetectableB.bifidum,B.catenulatum,
and B. longum group was comparable in the control, prebiotic, and
synbiotic groups and across all time points (Fig. 1B–D).

We assessed the abundance of 6 other major gut bacterial
taxa. In all intervention groups and at all-time points, the estimated
mean proportions of the main bacterial groups were suboptimal and
varied from 0% to 0.6% across the Atopobium, Bacteroides,
and Clostridium histolyticum/C. lituseburense and from 0.2% to
2.9% across the Eubacterium rectale/C. coccoides and Lactobacilli-
Enterococci groups. No major effect was observed on these bac-
terial groups except for the Enterobacteriaceae (Table 1). In the
mITT population, Enterobacteriaceae were detected at a high level
at day 3/5 especially in the control group and to a less extent in the
prebiotic group (15.1% vs 9.2%, respectively; P¼ 0.178). In the
synbiotic group, the estimated mean proportion of Enterobacter-
iaceae at day 3/5 was 3.9% and this was significantly lower than in
the control group (P¼ 0.002) and the difference persisted up to
week 12 (P¼ 0.016). At week 2, a significantly higher level in the
prebiotic than in the control group was observed (P¼ 0.03); how-
ever, no significant difference was detected between the prebiotic
and control group in the PP population (Table 1, Supplemental
Digital Content, Table 5, http://links.lww.com/MPG/A988).

Fecal pH, SCFA, and lactate were assessed as markers of the
metabolic activity of the entire gut microbial ecosystem. In the
mITT population, supplementation with synbiotic resulted in a
lower estimated mean pH from day 3/5 until week 4, and this
was significantly different from the control group (P< 0.0001 and
P¼ 0.001, respectively) (Table 1). Acetate was the main SCFA
detected and the concentration increased over the study period in all
intervention groups. At day 3/5, the concentration of acetate was
significantly higher in the synbiotic than in the control group in both
mITT and PP populations (P< 0.0001) (Table 1, Supplemental
Digital Content, Table 5, http://links.lww.com/MPG/A988). The
data on butyrate, propionate, and lactate were converted into binary
outcome as detected/not-detected because >30% of the subjects
had values below the detection limit at one or more time points.
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A significantly lower number of infants with detectable amounts of
butyrate were observed from week 4 until week 16 in the synbiotic
compared to the control group. No significant effect on propionate
and lactate was observed (data not shown).

All formulas were well tolerated and all groups showed a
comparable safety profile, based on the number and severity of
AEs and growth (data not shown). The proportions of subjects
experiencing AEs were similar across intervention groups with
no significant difference between groups for overall AEs
(Chi-square¼ 1.78, P¼ 0.62). All of the reported AEs were
not related to the study product except for one subject in the
prebiotic and the control groups (irritability and constipation of
mild severity, respectively). Post-hoc analysis showed a lower
percentage of subjects with AEs-related skin disorders in the
synbiotic compared to the control group (20% vs 42%,
P¼ 0.017) (Supplemental Digital Content, Fig. 2, http://
links.lww.com/MPG/A988). After correcting for family history
of allergy, we observed that infants with reported eczema/Atopic
Dermatitis (AD) were less frequent in the synbiotic than in the
control group; however, the number of subjects is low to draw
any biological conclusion.

DISCUSSION

Our findings revealed a delayed intestinal colonization by
Bifidobacterium species in C-section–delivered infants, consistent
with previous studies (5,6). This delayed settlement of bifidobac-
teria was apparent from the first days of life and persisted until 2 to
3 months of age. Early supplementation with scGOS/lcFOS and B.
breve M-16V resulted in an immediate colonization by Bifidobac-
terium suggesting that the first 3 months of life represent a window
of opportunity for a fast recovery of Bifidobacterium colonization in
C-section–delivered infants. The relevance of preventing the
delayed colonization by Bifidobacterium in C-section born infants
lies in the recognized contributory role of Bifidobacterium in early
life immune programming (7,11). Members of the genus Bifido-
bacterium have been depicted as microbial biomarker of immune
fitness in healthy nonatopic infants (12). A recent study indicated
that B. breve abundance was correlated with a protection against the
development of eczema and immune sensitization in infants (13).
The synbiotic mixture used in the present study provided an
exogenous strain that promoted intraspecies diversity, a biological
phenomenon, which was translated through the detection of
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FIGURE 1. Effect of the intervention on the estimated mean of (A) total Bifidobacterium gene count (Log10 copies/g of feces) as determined by
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Data expressed as estimated mean proportion (SEM) of infants with detectable Bifidobacterium (modified intention-to-treat mITT population).
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indigenous B. breve that appeared slowly over the time. At the end
of intervention, the proportion of subjects with detectable infant
type Bifidobacterium species was comparable across all the inter-
vention groups, indicating that supplementation with a unique
probiotic strain did not impair the development of the indigenous
bifidobacterial community over time. Furthermore, synbiotic pro-
vides a well-defined and safe alternative for the recently described
vaginal seeding, which is rather undefined and may contain less
desired biological constituents (10). Supporting the development of
the gut microbiota in early life and the typical Bifidobacterium
species found in healthy vaginally born and breast-fed infants may
improve certain immune phenotypes that are particularly relevant
for C-section born infants. Hong et al (12) observed that C-section–
born infants with eczema featured a delayed colonization by
Bifidobacterium and an enrichment of Enterobacteriaceae.

In addition, we showed that the synbiotic formula resulted
in reduced abundance of Enterobacteriaceae that was likely due to
the acidic intestinal milieu generated by the synbiotic modulation
of the gut microbiota and increase of acetate. The production
of SCFA such as acetate by obligate anaerobic bacteria was
depicted as a mechanism for metabolic exclusion of Enterobacter-
iaceae from the large bowel (14). Recently, Matsuki et al demon-
strated in vaginally born infants, that acetate derived from the
metabolism of Bifidobacterium sp. was the main SCFA detected in
feces. This production of acetate contributed to the acidification of
the intestinal milieu. Both physiological parameters have been
described as key health indicators of the gut ecosystem milieu (15).
Data from a murine infection model provided some clues on the
putative role of acetate-producing Bifidobacterium sp. in enhan-
cing immunity to bacterial infection (16). This may be a beneficial
modulation, as many species belonging to Enterobacteriaceae are,
under specific conditions, potentially pathogenic and also known
to produce inflammatory lipopolysaccharides (17). We measured
other bacterial taxa besides Bifidobacterium and Enterobacteria-
ceae; however, the proportion of these bacterial groups were
suboptimal (0%–3%), which did not allow us to confirm the
delayed colonization by Bacteroides in C-section–born infants
and to depict the effect of the synbiotic on the entire microbial
community (5). We are currently leveraging 16S rRNA sequencing
to get more insight in the whole gut microbiota community in
this cohort.

Recently, 2 studies indicated a strong association between C-
section and the development of eczema/AD in early life (1,2). In
addition, a clinical study demonstrated that probiotic intervention
had a preventive effect on immunoglobulin E–associated allergic
disease in cesarean-delivered children (18). We previously showed
that scGOS/lcFOS and B. breve M-16V had a positive effect
in improving the SCORAD of infants with immunoglobulin
E–mediated AD and may had a protective effect on asthma
(19,20). Although the present study was not designed to measure
any clinical endpoint as primary outcome, the AEs data revealed a
significantly lower incidence of skin disorders specifically eczema/
AD in infants supplemented with the synbiotic mixture. A well-
designed clinical study is warranted to confirm the biological
significance of this observation.

CONCLUSIONS
Our study provides pioneering evidence that supplement-

ation with scGOS/lcFOS and B. breve M16-V in C-section–born
infants allows a fast colonization by bifidobacteria from the first
days of life. The rapid settlement of this keystone infant type species
contributes to emulate the gut physiological conditions (production
of acetate and acidic gut milieu) observed in vaginally born infants.
These biological phenomena have been depicted as an indicator of
gut health.
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