1. EFSA Scientific Opinion on the substantiation of a health claim related to iron and contribution to normal cognitive development pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA Journal 2013;11(7):3335, 10 pp 
  2. Lozoff, et al. Preschool-aged children with iron deficiency anemia show altered affect and behavior. J Nutr. 2007;137(3):683-689. 
  3. Lozoff, et al. Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr Rev. 2006; 64:S34–S43. 
  4. EFSA Scientific Opinion on Dietary Reference Values for iron. EFSA Journal 2015;13(10):4254, 115 pp. 
  5. UNICEF 2013 The first 1,000 days of life: The brain’s window of opportunity (unicef-irc.org). 
  6. Jones, Stephanie. “Towards a Strong Foundation: Social and Emotional Development in Young Children.” Centre for Early Childhood, centreforearlychildhood.org/latest- learnings/essays/towards-a-strong-foundation-social-and-emotional-development-in-young-children/. Accessed 15 May. 2023 
  7. Soto-Icaza P, Aboitiz F, Billeke P. Development of social skills in children: neural and behavioral evidence for the elaboration of cognitive models. Front Neurosci. 2015;9:333. 
  8. WHO (2019). Children are not little adults. In: WHO training package for the health sector: children’s health and the environment. Geneva: World Health Organization. 
  9. Alles MS, Eussen SR, van der Beek EM. Nutritional challenges and opportunities during the weaning period and in young childhood. Ann Nutr Metab.2014;64(3-4):284-293. 
  10. Wang Y, Wu Y, Li T, et al. Iron Metabolism and Brain development in Premature Infants. Front. Physiol. 2019;10;463. 
  11. Yeung CK, et al. Prebiotics and iron bioavailability – is there a connection? J Food Sci 2005; 70. 
  12. Rusu I, Suharoschi R, et al. Iron Supplementation Influence on the Gut Microbiota and Probiotic Intake Effect in Iron Deficiency—A Literature-Based Review. Nutrients 2020;12:1993. 
  13. Christides T, Ganis J, Sharp P. In vitro assessment of iron availability from commercial Young Child Formulae supplemented with prebiotics. Eur J Nutr 2018 57:669–678. 
  14. Lynch S, Stoltzfus R. Iron and Ascorbic Acid: Proposed Fortification Levels and Recommended Iron Compounds. The Journal of Nutrition 2003; 133(9,):2978S–2984S. 
  15. Plevin D, Galletly C. The neuropsychiatric effects of vitamin C deficiency: a systematic review. BMC Psychiatry 2020; 20:315. 
  16. Ye L, Liddle RA. Gastrointestinal hormones and the gut connectome. Curr Opin Endocrinol Diabetes Obes. 2017;24(1):9-14. 
  17. Foster, et al., Stress & the Gut-Brain Axis: Regulation by the microbiome. Neurobiology of stress. 2017; Vol 7 124-136 
  18. Georgieff MK, Ramel SE, Cusick SE. Nutritional influences on brain development. Acta Paediatr. 2018;107(8):1310-1321. doi:10.1111/apa.14287. 
  19. Prado EL, Dewey KG. Nutrition and brain development in early life. Nutr Rev. 2014;72(4):267-284. 
  20. Scholtens PA, Goossens DA, Staiano A. Stool characteristics of infants receiving short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides: a review. World J Gastroenterol. 2014;20(37):13446 13452. doi:10.3748/wjg.v20.i37.13446. 
  21. Moro G, Minoli I, Mosca M, et al. Dosage-related bifidogenic effects of galacto- and fructooligosaccharides in formula-fed term infants. J Pediatr Gastroenterol Nutr. 2002;34(3):291-295. doi:10.1097/00005176-200203000-00014
x